

- 1. A beam of ions is injected into a gas. The beam has an initial density n_o ions/cm³. Find the density of the remaining ions at a distance equal to (a) the mean free path, (b) five times the mean free path.
- 2. In an experiment to measure α for a certain gas, it was found that the steady state current is 5.5 x 10⁻⁸ A at 8 kV at a distance of 0.4 cm between the plane electrodes. Keeping the field constant and reducing the distance to 0.1 cm results in a current of 5.5 x 10⁻⁹ A. Calculate:
 - a) Townsend's primary ionization coefficient α .
 - b) The number of electrons emitted from the cathode per second.
 - c) The electrode spacing that would result an electron avalanche of 10^2 .
- 3. In an experiment in a certain gas it was found that the current between two Parallel plates were 1.22, 1.82 and 2.22 of the initiating photocurrent at distances 0.005, 0.01504 and 0.019 m respectively. E/P and P were maintained constant at 160 V/cm.torr, 0.1 torr respectively. Calculate:

a) Townsend's primary ionization coefficient α .

b)The secondary ionization coefficient γ .

c)The ionization efficiency.

- d)The distance and the voltage at which transition to self sustained (breakdown) take place.
- 4. The following table gives two sets of experimental results for studying Townsend's mechanism. E is kept constant in each set. **Determine** the values of Townsend's first and second ionization coefficients for each set.

I set 30 kV/cm Gap distance (mm)	II set kV/cm Observed current A					
	I set	II set				
0.5	1.5×10^{-13}	6.5 × 10 ⁻¹⁴				
1.0	5×10^{-13}	2.0×10^{-13}				
1.5	8.5×10^{-13}	4×10^{-13}				
2.0	1.5×10^{-12}	8 × 10 ⁻¹³				
2.5	5.6×10^{-12}	1.2×10^{-12}				
3.0	1.4×10^{-10}	6.5 × 10 ⁻¹²				
3.5	1.4×10^{-10}	6.5 × 10 ⁻¹¹				
4.0	1.5×10^{-9}	4.0×10^{-10}				
5.0	7.0 × 10 ⁻⁷	1.2 × 10 ⁻⁸				

The minimum current observed is 6×10^{-14} A

5. The following table gives two sets of experimental results for studying Townsend's mechanism. E is kept constant in each set. **Determine** the values of Townsend's first and second ionization coefficients for each set.

Set 1:									
Gap distance (mm)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.0
Applied voltage	1000	2000	3000	4000	5000	6000	7000	8000	10000
V (volts)									
Observed current 1 (A)	10-13	3 × 10 ⁻¹³	6 × 10 ⁻¹³	10-12	4 × 10 ⁻¹²	10-11	10-10	10-*	5 × 10-7
Set 2:									
V (volts)	500	.1000	1500	2000	2500	3000	3500	4000	4500
<i>I</i> (A)	5 × 10 ⁻¹⁴	1.5 × 10 ⁻¹³	3 × 10 ⁻¹³	6×10^{-13}	10-12	5 × 10 ⁻¹²	5 × 10 ⁻¹¹	3 × 10 ⁻¹⁰	10-8

The minimum current observed when 150 V was applied was 5×10^{-14} A.

- 6. If an electron starts at a distance of 0.5 mm in a field where $\alpha = b$ -ax cm-1, where X is measured from the cathode surface in cm, **Specify** the type of this field and give the reason, **Also Find** the distance it must travel to produce an avalanche of 10^2 electrons where a= $10*10^3$ and b= $3.5*10^3$.
- 7. **Repeat** the above problem if an electron starts at x=5mm.
- 8. For the field given in problem No.6, **Determine** the minimum distance from the anode, from which an electron start an avalanche having a total no of electrons of 10^2 .
- 9. For the field given in problem No.6, If α - η =a-b \sqrt{X} cm⁻¹, **Determine** the thickness of ionization zone.